Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS2/WS2at 4° twist angle and WSe2/MoSe2heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations.more » « less
-
Understanding the ultrafast excitation and transport dynamics of plasmon-driven hot carriers is critical to the development of optoelectronics, photochemistry, and solar-energy harvesting. However, the ultrashort time and length scales associated with the behavior of these highly out-of-equilibrium carriers have impaired experimental verification of ab initio quantum theories. Here, we present an approach to studying plasmonic hot-carrier dynamics that analyzes the temporal waveform of coherent terahertz bursts radiated by photo-ejected hot carriers from designer nano-antennas with a broken symmetry. For ballistic carriers ejected from gold antennas, we find an ~11-femtosecond timescale composed of the plasmon lifetime and ballistic transport time. Polarization- and phase-sensitive detection of terahertz fields further grant direct access to their ballistic transport trajectory. Our approach opens explorations of ultrafast carrier dynamics in optically excited nanostructures.more » « less
-
Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.more » « less
-
Abstract The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi 2 Te 4 . Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise ‘forbidden’ by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi 2 Te 4 , the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases.more » « less
-
Defects may display high reactivity because the specific arrangement of atoms differs from crystalline surfaces. We demonstrate that high-temperature steam pretreatment of palladium catalysts provides a 12-fold increase in the mass-specific reaction rate for carbon-hydrogen (C–H) activation in methane oxidation compared with conventional pretreatments. Through a combination of experimental and theoretical methods, we demonstrate that an increase in the grain boundary density through crystal twinning is achieved during the steam pretreatment and oxidation and is responsible for the increased reactivity. The grain boundaries are highly stable during reaction and show specific rates at least two orders of magnitude higher than other sites on the palladium on alumina (Pd/Al 2 O 3 ) catalysts. Theoretical calculations show that strain introduced by the defective structure can enhance C–H bond activation. Introduction of grain boundaries through laser ablation led to further rate increases.more » « less
An official website of the United States government
